近日,一个研究小组对野生二粒小麦(wild emmer wheat)的基因组进行了分析,让人们对小麦驯化后的基因组变化有了一定的了解。
对于硬质小麦和面包小麦这些重要经济作物来说,野生二粒小麦是直接祖先。研究小组利用全基因组鸟枪法测序和三维染色体构象捕获测序的组合,生成了野生二粒小麦的10.1 Gb组装。研究揭示了两个基因的突变,这些基因可能使麦穗不再破碎,这是一个重要的驯化特征。
研究人员表示:“从生物和历史的角度来看,我们已经创造了一个‘时空隧道’,让我们能够去研究现代农业以前的小麦。通过与现代小麦的比较,我们能够鉴定出参与驯化的基因。”
研究人员对野生二粒小麦种质Zavitan进行了全基因组鸟枪法测序。他们利用3D Hi-C数据对生成的scaffold进行验证,将测序数据分配到14条假分子序列,这反映了14条野生二粒小麦的染色体。研究人员报告称,这实现了10.5 Gb的组装,其中10.1 Gb包含在14条假分子序列中。
同时,研究人员对野生二粒小麦不同发育阶段的各个组织进行了RNA测序。他们建立了65,012高度可信的基因模型。同源性分析进一步表明,近四分之三的基因有同源对。
野生二粒小麦成熟后,完整的穗会分裂成小穗,其果实自然脱落,便于传播。之后,在野生小麦驯化的过程中,破碎的麦穗转变为不脱落的麦穗,从而更便于农民收割。不过,这种关键性转变的分子基础还不确定。
研究人员将Zavitan与驯化的硬质小麦进行杂交,发现了调控破碎表型的基因组区域,包括野生二粒小麦3A和3B染色体上两个主要区域。具体来说,他们在3A染色体上鉴定出小麦基因TtBtr1-A和TtBtr2-A,在3B染色体上鉴定出TtBtr1-B和TtBtr2-B。
研究人员预测,驯化小麦含有的TtBtr1-A和TtBtr1-B等位基因变异可能影响蛋白质功能,导致破碎功能的丧失。他们在同基因小麦品系中检验了TtBtr1-A和TtBtr1-B的影响,发现这两个纯化隐性突变似乎是产生非破碎性状所必需的。
研究人员表示:“这种新的资源让我们能够鉴定出一些控制主要性状的基因,这些性状在小麦驯化过程中被早期人类所选择,是现代小麦品种的基础。这些基因也为未来的育种工作提供了宝贵的资源。”